Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2005 Jan 21;280(3):2388-94. Epub 2004 Nov 10.

Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiating osteoblasts in a glycogen synthase kinase-3beta-dependent and -independent manner.

Author information

1
Department of Orthopedic Surgery and Institute for Genetic Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, California 90033, USA.

Abstract

Glucocorticoids, widely used as immune suppressors, cause osteoporosis by inhibiting bone formation. In MC3T3-E1 osteoblast-like cultures, dexamethasone (DEX) activates glycogen synthase kinase-3beta (GSK3beta) and inhibits a differentiation-related cell cycle that occurs at a commitment stage immediately after confluence. Here we show that DEX inhibition of the differentiation-related cell cycle is associated with a decrease in beta-catenin levels and inhibition of LEF/TCF-mediated transcription. These inhibitory activities are no longer observed in the presence of lithium, a GSK3beta inhibitor. DEX decreased the serum-responsive phosphorylation of protein kinase B/Akt-Ser(473) within minutes, and this inhibition was also observed after 12 h. When the phosphatidylinositol 3-kinase (PI3K)/Akt pathway was inhibited by wortmannin, DEX no longer inhibited beta-catenin levels. Furthermore, DEX-mediated inhibition of LEF/TCF transcriptional activity was attenuated in the presence of dominant negative forms of either PI3K or protein kinase B/Akt. These results suggest cross-talk between the PI3K/Akt and Wnt signaling pathways. Consistent with a role for Wnt signaling in the osteoblast differentiation-related cell cycle, wortmannin partially negated the DEX inhibition of this cell cycle. DEX also induced histone deacetylase (HDAC) 1, which is known to inhibit LEF/TCF transcriptional activity. Overexpression of HDAC1 negated the inhibitory effect of DEX on LEF/TCF transcriptional activity. In the presence of trichostatin A, a deacetylase inhibitor, DEX-mediated inhibition of the differentiation-related cell cycle was partially negated. When administered together, wortmannin and trichostatin A completely negated the inhibitory effect of DEX on the differentiation-related cell cycle. These results suggest that inhibition of a PI3K/Akt/GSK3beta/beta-catenin/LEF axis and stimulation of HDAC1 cooperate to mediate the inhibitory effect of DEX on Wnt signaling and the osteoblast differentiation-related cell cycle.

PMID:
15537647
DOI:
10.1074/jbc.M406294200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center