Send to

Choose Destination
DNA Repair (Amst). 2005 Jan 2;4(1):3-9.

2-AAF-induced tumor development in nucleotide excision repair-deficient mice is associated with a defect in global genome repair but not with transcription coupled repair.

Author information

Laboratory of Toxicology, Pathology and Genetics, National Institute of Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands.


The nucleotide excision repair (NER) pathway comprises two sub-pathways, transcription coupled repair (TCR) and global genome repair (GGR). To establish the importance of these separate sub-pathways in tumor suppression, we exposed mice deficient for either TCR (Csb), GGR (Xpc) or both (Xpa) to 300 ppm 2-acetylaminofluorene (in feed, ad libitum) in a unique comparative exposure experiment. We found that cancer proneness was directly linked to a defect in the GGR pathway of NER as both Xpa and Xpc mice developed significantly more liver tumors upon 2-AAF exposure than wild type or Csb mice. In contrast, a defect in TCR appeared to act tumor suppressive, leading to a lower hepatocellular tumor response in Xpa mice (tumor incidence of 25%) as compared to Xpc mice (53% tumor-bearing mice). The link between deficient GGR and tumor proneness was most pronounced in the liver, but this phenomenon was also found in the urinary bladder. As tumor induction by 2-AAF appeared almost exclusively dependent on a defect in GGR, we examined whether gene mutation induction in the non-transcribed lacZ locus could reliably predict tumor risk. Interestingly, however, short-term 2-AAF exposure induced lacZ mutant levels in Csb mice almost as high as those found in Xpa or Xpc mice. This indicates that lacZ mutant frequencies are not correlated with a specific DNA repair defect and eventual tumor outcome, at least not in the experimental design presented here.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center