Format

Send to

Choose Destination
See comment in PubMed Commons below
Int Immunopharmacol. 2004 Dec 20;4(14):1727-37.

Evaluation and comparison of commercially available Aloe vera L. products using size exclusion chromatography with refractive index and multi-angle laser light scattering detection.

Author information

  • 1Carrington Laboratories, Inc., 2001 Walnut Hill Lane., Irving, TX 75038, USA. cturner@carringtonlabs.com

Abstract

Raw materials supplied as Aloe vera L. (sometimes referred to as Aloe barbadensis) samples often contain different composition of low and high molecular weight components when analyzed by size exclusion chromatography. One major reason for variable compositions of commercial A. vera L. materials is that they are produced by different manufacturing techniques. Consistent composition of matter based upon a given standard has been difficult to define. In addition, the method of quantifying and characterization of these commercially available materials has not been agreed upon within the industry. The end user, whether a researcher, a manufacturer, a marketing arm of industry or the consumer, should know that they are receiving a consistent product. A blind study of 32 various A. vera L. samples from different manufacturers, and a prepared sample of fresh A. vera L. gel with the commercial, biologic drug Acemannan Immunostimulanttrade mark, were analyzed for content of high molecular weight (polysaccharides) material by size exclusion chromatography with refractive index detection (SEC/RI) and SEC/RI coupled with multi-angle laser light scattering (MALLS) detection. Results from the SEC/RI analysis showed significant variation in the high molecular weight content, and the MALLS analysis also showed significant variation versus SEC/RI. In addition, HPLC analysis of the anthraquinone content showed that all samples contained significantly less than that of the raw, unwashed aloe gel. The variation of results from all analysis is attributed to differing methods in which the samples were processed by the different manufacturers.

PMID:
15531289
DOI:
10.1016/j.intimp.2004.07.004
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center