Format

Send to

Choose Destination
See comment in PubMed Commons below
Biomacromolecules. 2004 Nov-Dec;5(6):2105-15.

Secondary structures and conformational changes in flagelliform, cylindrical, major, and minor ampullate silk proteins. Temperature and concentration effects.

Author information

1
Department of Zoology, Oxford University, Oxford OX1 3PS, United Kingdom. cedric.dicko@zoology.ox.ac.uk

Abstract

Orb weaver spiders use exceptionally complex spinning processes to transform soluble silk proteins into solid fibers with specific functions and mechanical properties. In this study, to understand the nature of this transformation we investigated the structural changes of the soluble silk proteins from the major ampullate gland (web radial threads and spider safety line); flagelliform gland (web sticky spiral threads); minor ampullate gland (web auxiliary spiral threads); and cylindrical gland (egg sac silk). Using circular dichroism, we elucidated (i) the different structures and folds for the various silk proteins; (ii) irreversible temperature-induced transitions of the various silk structures toward beta-sheet-rich final states; and (iii) the role of protein concentration in silk storage and transport. We discuss the implication of these results in the spinning process and a possible mechanism for temperature-induced beta-sheet formation.

PMID:
15530023
DOI:
10.1021/bm034486y
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center