Format

Send to

Choose Destination
Dev Cell. 2004 Nov;7(5):745-54.

A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa.

Author information

1
Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA.

Abstract

The opportunistic pathogen Pseudomonas aeruginosa causes a variety of acute and chronic infections. We identified a gene whose inactivation results in attenuation of virulence due to premature activation of genes involved in biofilm formation and coordinate repression of genes required for initial colonization. This gene, retS, encodes a hybrid sensor kinase/response regulator with an unconventional arrangement of functional domains. Genome-wide transcriptional profiling indicates that the retS gene is required for expression of the Type III secretion system and other virulence factors and for repression of genes responsible for exopolysaccharide components of the P. aeruginosa biofilm matrix. These disparate phenotypes are suppressed by transposon insertions in genes encoding the GacS/GacA/rsmZ signal transduction pathway, a highly conserved system involved in the control of diverse adaptive functions. This study defines RetS as a pleiotropic regulator of multiple virulence phenotypes that orchestrates genes required for acute infection and genes associated with chronic persistence.

PMID:
15525535
DOI:
10.1016/j.devcel.2004.08.020
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center