Analysis of a naturally occurring asymmetry in vertical smooth pursuit eye movements in a monkey

J Neurophysiol. 1992 Jan;67(1):164-79. doi: 10.1152/jn.1992.67.1.164.

Abstract

1. We have investigated the mechanism of a directional deficit in vertical pursuit eye movements in a monkey that was unable to match upward eye speed to target speed but that had pursuit within the normal range for downward or horizontal target motion. Except for a difference in the axis of deficient pursuit, the symptoms in this monkey were similar to those seen with lesions in the frontal or parietal lobes of the cerebral cortex in humans or monkeys. Our evaluation of vertical pursuit in this monkey suggests a new interpretation for the role of the frontal and parietal lobes in pursuit. 2. The up/down asymmetry was most pronounced for target motion at speeds greater than or equal to 2 degree/s. For target motion at 15 or 30 degree/s, upward step-ramp target motion evoked a brief upward smooth eye acceleration, followed by tracking that consisted largely of saccades. Downward step-ramp target motion evoked a prolonged smooth eye acceleration, followed by smooth, accurate tracking. 3. Varying the amplitude of the target step revealed that the deficit was similar for targets moving across all locations of the visual field. Eye acceleration in the interval 0-20 ms after the onset of pursuit was independent of initial target position and was symmetrical for upward and downward target motion. Eye acceleration in the interval 60-80 ms after the onset of pursuit showed a large asymmetry. For upward target motion, eye acceleration in this interval was small and did not depend on initial target position. For downward target motion, eye acceleration depended strongly on initial target position and was large when the target started close to the position of fixation. 4. We next attempted to understand the mechanism of the up/down asymmetry by evaluating the monkey's vertical motion processing and vertical eye movements under a variety of tracking conditions. For spot targets, the response to upward image motion was similar to that in normal monkeys if the image motion was presented during downward pursuit. In addition, the monkey with deficient upward pursuit was able to use upward image motion to make accurate saccades to moving targets. We conclude that the visual processing of upward image motion was normal in this monkey and that an asymmetry in visual motion processing could not account for the deficit in his upward pursuit. 5. Upward smooth eye acceleration was normal when the spot target was moved together with a large textured pattern.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Acceleration
  • Animals
  • Conditioning, Operant / physiology
  • Macaca mulatta
  • Male
  • Motion Perception / physiology
  • Pursuit, Smooth / physiology*
  • Reaction Time / physiology
  • Visual Pathways / physiology