Send to

Choose Destination
Eur J Biochem. 1992 Mar 15;204(3):963-9.

Mannitol-specific enzyme II of the phosphoenolpyruvate-dependent phosphotransferase system of Staphylococcus carnosus. Sequence and expression in Escherichia coli and structural comparison with the enzyme IImannitol of Escherichia coli.

Author information

Ruhr-Universität Bochum, Gebäude NDEF, Federal Republic of Germany.


The enzyme IImannitol (EIImtl) of the phosphoenolpyruvate-dependent phosphotransferase system (PTS) catalyses the uptake and concomitant phosphorylation of mannitol by bacteria; it is specified by the gene mtlA. MtlA is located near the genes mtlF and mtlD in the staphylococcal genome, encoding the enzyme IIImtl and the mannitol-1-phosphate dehydrogenase, respectively. We present the cloning of the whole operon by a novel complementation system which is generally suitable for cloning Gram-positive PTS genes. The nucleotide sequence of a 2.5-kbp subclone spanning mtlA has been determined. From the deduced amino acid sequence, it is predicted that the membrane-protein EIImtl consists of 505 amino acid residues (54112 Da). The protein has the expected hydropathy profile of an integral-membrane protein. The NH2-terminal part of the enzyme resides within the membrane, whereas the COOH-terminus of the enzyme has the properties of a soluble protein. Comparison with the known amino acid sequence of EIImtl of Escherichia coli [Lee, C. A. & Saier, M. H. (1983) J. Biol. Chem. 258, 10761-10767] showed significant similarity. The motif containing the cysteine, which is the putative second phosphorylation site in EIImtl of E. coli [Pas, H. H. & Robillard, G. T. (1988) Biochemistry 27, 5835-5839], is well conserved in EIImtl of Staphylococcus carnosus. Chemical modification of the single active site cysteine residue by Ellman's reagent leads to total inactivation, which can be reversed by treatment with 2-mercaptoethanol.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center