Format

Send to

Choose Destination
J Food Prot. 2004 Oct;67(10):2123-31.

Attachment and biofilm formation by Escherichia coli O157:H7 on stainless steel as influenced by exopolysaccharide production, nutrient availability, and temperature.

Author information

1
Center for Food Safety and Department of Food Science and Technology, University of Georgia, 1109 Experiment Street, Griffin, Georgia 30223-1797, USA.

Abstract

The influence of exopolysaccharide (EPS) production, nutrient availability, and temperature on attachment and biofilm formation by Escherichia coli O157:H7 strains ATCC 43895 (wild type) and 43895-EPS (extensive EPS-producing mutant) on stainless steel coupons (SSCs) was investigated. Cells grown on heated lettuce juice agar and modified tryptic soy agar were suspended in phosphate-buffered saline (PBS). SSCs were immersed in the cell suspension (10(9) CFU/ml) at 4 degrees C for 24 h. Biofilm formation by cells attached to SSCs as affected by immersing in 10% tryptic soy broth (TSB), lettuce juice broth (LJB), and minimal salts broth (MSB) at 12 and 22 degrees C was studied. A significantly lower number of strain 43895-EPS cells, compared to strain ATCC 43895 cells, attached to SSCs during a 24-h incubation (4 degrees C) period in PBS suspension. Neither strain formed a biofilm on SSCs subsequently immersed in 10% TSB or LJB, but both strains formed biofilms in MSB. Populations of attached cells and planktonic cells of strain ATCC 43895 gradually decreased during incubation for 6 days in LJB at 22 degrees C, but populations of strain 43895-EPS remained constant for 6 days at 22 degrees C, indicating that the EPS-producing mutant, compared to the wild-type strain, has a higher tolerance to the low-nutrient environment presented by LJB. It is concluded that EPS production by E. coli O157:H7 inhibits attachment to SSCs and that reduced nutrient availability enhances biofilm formation. Biofilms formed under conditions favorable for EPS production may protect E. coli O157:H7 against sanitizers used to decontaminate lettuce and produce processing environments. Studies are under way to test this hypothesis.

PMID:
15508620
DOI:
10.4315/0362-028x-67.10.2123
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center