Format

Send to

Choose Destination
See comment in PubMed Commons below
Appl Opt. 2004 Oct 10;43(29):5564-74.

Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by raman scattering.

Author information

1
Lehrstuhl für Technische Thermodynamik, Universität Erlangen-Nürnberg, Am Weichselgarten 8, 91058 Erlangen, Germany. je@ltt.uni-erlangen.de

Abstract

We describe the use of linear Raman scattering for the investigation of fuel-rich sooting flames. In comparison, the frequency-tripled and -quadrupled fundamental wavelengths of a Nd:YAG laser have been used as an excitation source for study of the applicability of these laser wavelengths for analysis of sooting flames. The results obtained show that, for the investigation of strongly sooting flames, 266-nm excitation is better than 355-nm excitation. Although the entire fluorescence intensity of polycyclic aromatic hydrocarbons (PAHs) decreases with rising excitation wavelength, there is increased interference with the Raman signals by displacement of the spectral region of the Raman signals toward the fluorescence maximum of the laser-induced fluorescence emissions. Besides the broadband signals of PAHs, narrowband emissions of laser-produced C2 occur in the spectra of sooting flames and affect the Raman signals. These C2 emission bands are completely depolarized and can be separated by polarization-resolved detection. A comparison of the laser-induced fluorescence emissions of an ethylene flame with those of a methane flame shows the same spectral features, but the intensity of the emissions is larger by a factor of 5 for the ethylene fuel. Using 266-nm radiation for Raman signal excitation makes possible measurements in the ethylene flame also.

PMID:
15508615
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Optical Society of America
    Loading ...
    Support Center