Format

Send to

Choose Destination
See comment in PubMed Commons below
Blood. 2005 Feb 15;105(4):1614-21. Epub 2004 Oct 26.

Generation of migratory antigen-specific plasma blasts and mobilization of resident plasma cells in a secondary immune response.

Author information

1
Department of Medicine, Charité, Humbold University, D-10117 Berlin, Germany.

Abstract

Maintenance of protective humoral immunity depends on the generation and survival of antibody-secreting cells. The bone marrow provides niches for long-term survival of plasma cells generated in the course of systemic immune responses in secondary lymphoid organs. Here, we have analyzed migratory human plasma blasts and plasma cells after secondary vaccination with tetanus toxin. On days 6 and 7 after immunization, CD19(+)/CD27(high)/intracellular immunoglobulin G(high) (IgG(high))/HLA-DR(high)/CD38(high)/CD20(-)/CD95(+) tetanus toxin-specific antibody-secreting plasma blasts were released in large numbers from the secondary lymphoid organs into the blood. These cells show chemotactic responsiveness toward ligands for CXCR3 and CXCR4, probably guiding them to the bone marrow or inflamed tissue. At the same time, a population of CD19(+)/CD27(high)/intracellular IgG(high)/HLA-DR(low)/CD38(+)/CD20(-)/CD95(+) cells appeared in the blood in large numbers. These cells, with the phenotype of long-lived plasma cells, secreted antibodies of unknown specificity, not tetanus toxoid. The appearance of these plasma cells in the blood indicates successful competition for survival niches in the bone marrow between newly generated plasma blasts and resident plasma cells as a fundamental mechanism for the establishment of humoral memory and its plasticity.

PMID:
15507523
DOI:
10.1182/blood-2004-07-2507
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center