Send to

Choose Destination
Anesthesiology. 2004 Nov;101(5):1184-94.

Mitochondrial injury and caspase activation by the local anesthetic lidocaine.

Author information

Department of Anesthesiology, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.



Lidocaine, a local anesthetic, can be neurotoxic. However, the cellular mechanisms of its neurotoxicity at concentrations encountered during spinal anesthesia remain unclear.


The authors examined the mechanisms of lidocaine neurotoxicity in the ND7 cell line derived from rat dorsal root ganglion. Individual neurons were assayed by flow cytometry or microscopy using fluorescent probes of plasma membrane integrity, mitochondrial membrane potential, caspase activity, phospholipid membrane asymmetry, and mitochondrial cytochrome c release.


In the ND7 cell line, lidocaine at 185 mm x 10 min to 2.3 mm x 24 h caused necrosis or late apoptosis. Equimolar Tris buffer and equipotent tetrodotoxin controls were not toxic, indicating that neither osmotic nor Na-blocking effects explain lidocaine neurotoxicity. The earliest manifestation of lidocaine neurotoxicity was complete loss of mitochondrial membrane potential within 5 min after exposure to lidocaine at a concentration of 19 mm or greater. Consistent with these data, 37 mm lidocaine (1%) induced release of mitochondrial cytochrome c into the cytoplasm, as well as plasma membrane blebbing, loss of phosphatidylserine membrane asymmetry, and caspase activation, with release of mitochondrial cytochrome c to the cytoplasm within 2 h. Treatment with z-VAD-fmk, a specific inhibitor of caspases, prevented caspase activation and delayed but did not prevent neuronal death, but did not inhibit the other indicators of apoptosis.


Collectively, these data indicate that lidocaine neurotoxicity involves mitochondrial dysfunction with activation of apoptotic pathways.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center