Format

Send to

Choose Destination
See comment in PubMed Commons below
Eur J Cell Biol. 2004 Aug;83(7):317-25.

Hyaluronan catabolism: a new metabolic pathway.

Author information

1
Department of Pathology, School of Medicine, University of California, San Francisco, 513 Parnassus Avenue, S-564, San Francisco, CA 94143-0511, USA. rstern@itsa.ucsf.edu

Abstract

A new pathway of intermediary metabolism is described involving the catabolism of hyaluronan. The cell surface hyaluronan receptor, CD44, two hyaluronidases, Hyal-1 and Hyal-2, and two lysosomal enzymes, beta-glucuronidase and beta-N-acetylglucosaminidase, are involved. This metabolic cascade begins in lipid raft invaginations at the cell membrane surface. Degradation of the high-molecular-weight extracellular hyaluronan occurs in a series of discreet steps generating hyaluronan chains of decreasing sizes. The biological functions of the oligomers at each quantum step differ widely, from the space-filling, hydrating, anti-angiogenic, immunosuppressive 10(4)-kDa extracellular polymer, to 20-kDa intermediate polymers that are highly angiogenic, immuno-stimulatory, and inflammatory. This is followed by degradation to small oligomers that can induce heat shock proteins and that are anti-apoptotic. The single sugar products, glucuronic acid and a glucosamine derivative are released from lysosomes to the cytoplasm, where they become available for other metabolic cycles. There are 15 g of hyaluronan in the 70-kg individual, of which 5 g are cycled daily through this pathway. Some of the steps in this catabolic cascade can be commandeered by cancer cells in the process of growth, invasion, and metastatic spread.

PMID:
15503855
DOI:
10.1078/0171-9335-00392
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center