Format

Send to

Choose Destination
Genome. 2004 Oct;47(5):839-48.

Polyploidization-induced genome variation in triticale.

Author information

1
Department of Agronomy, University of Missouri, Columbia, MO 65211, USA.

Abstract

Polyploidization-induced genome variation in triticale (x Triticosecale Wittmack) was investigated using both AFLP and RFLP analyses. The AFLP analyses were implemented with both EcoRI-MseI (E-M) and PstI-MseI (P-M) primer combinations, which, because of their relative differences in sensitivity to cytosine methylation, primarily amplify repetitive and low-copy sequences, respectively. The results showed that the genomic sequences in triticale involved a great degree of variation including both repetitive and low-copy sequences. The frequency of losing parental bands was much higher than the frequency of gaining novel bands, suggesting that sequence elimination might be a major force causing genome variation in triticale. In all cases, variation in E-M primer-amplified parental bands was more frequent in triticale than that using P-M primers, suggesting that repetitive sequences were more involved in variation than low-copy sequences. The data also showed that the wheat (Triticum spp.) genomes were relatively highly conserved in triticales, especially in octoploid triticales, whereas the rye (Secale cereale L.) genome consistently demonstrated a very high level of genomic sequence variation (68%-72%) regardless of the triticale ploidy levels or primers used. In addition, when a parental AFLP band was present in both wheat and rye, the tendency of the AFLP band to be present in triticale was much higher than when it was present in only one of the progenitors. Furthermore, the cDNA-probed RFLP analyses showed that over 97% of the wheat coding sequences were maintained in triticale, whereas only about 61.6% of the rye coding sequences were maintained, suggesting that the rye genome variation in triticale also involved a high degree of rye coding sequence changes. The data also suggested that concerted evolution might occur in the genomic sequences of triticale. In addition, the observed genome variation in wheat-rye addition lines was similar to that in triticale, suggesting that wheat-rye addition lines can be used to thoroughly study the genome evolution of polyploid triticale.

PMID:
15499398
DOI:
10.1139/g04-051
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center