Format

Send to

Choose Destination
See comment in PubMed Commons below
Dev Dyn. 2004 Dec;231(4):683-92.

Evidence for the involvement of neurotrophins in muscle transdifferentiation and acetylcholine receptor transformation in the esophagus of Myf5(-/-):MyoD(-/-) and NT-3(-/-) embryos.

Author information

1
Dalhousie University, Department of Anatomy and Neurobiology, Halifax, Nova Scotia, Canada.

Abstract

The primary aim of our study was to determine whether the esophageal innervation (i.e., vagal and enteric) and the skeletal muscle-secreted neurotrophins have a role in smooth-to-skeletal muscle transdifferentiation and in the muscarinic-to-nicotinic acetylcholine receptor type transition. To that end, we used genetically engineered embryos and immunohistochemistry. We found that, in the absence of Myf5 and MyoD, the esophageal muscle cells failed to develop the striated phenotype of acetylcholine receptors. In addition, the development of vagal and enteric innervation was delayed in Myf5(-/-):MyoD(-/-) and NT-3(-/-) mutants, but it was reestablished 2 days before the end of gestation. The smooth muscle cells in the esophagus appeared to be a distinct subpopulation of cells and their ability to transdifferentiate was based on their competence to express neurotrophins and their receptors. Finally, our data suggest a role for NT-3 in the esophageal muscle transdifferentiation.

PMID:
15497153
DOI:
10.1002/dvdy.20165
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center