Format

Send to

Choose Destination
Genesis. 2004 Nov;40(3):164-70.

Drosophila tudor is essential for polar granule assembly and pole cell specification, but not for posterior patterning.

Author information

1
Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1.

Abstract

Pole cells and posterior segmentation in Drosophila are specified by maternally encoded genes whose products accumulate at the posterior pole of the oocyte. Among these genes is tudor (tud). Progeny of hypomorphic tud mothers lack pole cells and have variable posterior patterning defects. We have isolated a null allele to further investigate tud function. While no pole cells are ever observed in embryos from tud-null mothers, 15% of these embryos have normal posterior patterning. OSKAR (OSK) and VASA (VAS) proteins, and nanos (nos) RNA, all initially localize to the pole plasm of tud-null oocytes and embryos from tud-null mothers, while localization of germ cell-less (gcl) and polar granule component (pgc), is undetectable or severely reduced. In embryos from tud-null mothers, polar granules are greatly reduced in number, size, and electron density. Thus, tud is dispensable for somatic patterning, but essential for pole cell specification and polar granule formation.

PMID:
15495201
DOI:
10.1002/gene.20079
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center