Send to

Choose Destination
See comment in PubMed Commons below
Cancer Res. 2004 Oct 15;64(20):7473-8.

Human polynucleotide phosphorylase (hPNPaseold-35): a potential link between aging and inflammation.

Author information

Department of Pathology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, College of Physicians and Surgeons, New York, New York, USA.


Chronic inflammation is a characteristic feature of aging, and the relationship between cellular senescence and inflammation, although extensively studied, is not well understood. An overlapping pathway screen identified human polynucleotide phosphorylase (hPNPase(old-35)), an evolutionary conserved 3',5'-exoribonuclease, as a gene up-regulated during both terminal differentiation and cellular senescence. Enhanced expression of hPNPase(old-35) via a replication-incompetent adenovirus (Ad.hPNPase(old-35)) in human melanoma cells and normal human melanocytes results in a characteristic senescence-like phenotype. Reactive oxygen species (ROS) play a key role in the induction of both in vitro and in vivo senescence. We now document that overexpression of hPNPase(old-35) results in increased production of ROS, leading to activation of the nuclear factor (NF)-kappaB pathway. Ad.hPNPase(old-35) infection promotes degradation of IkappaBalpha and nuclear translocation of NF-kappaB and markedly increases binding of the transcriptional activator p50/p65. The generation of ROS and activation of NF-kappaB by hPNPase(old-35) are prevented by treatment with a cell-permeable antioxidant, N-acetyl-l-cysteine. Infection with Ad.hPNPase(old-35) enhances the production of interleukin (IL)-6 and IL-8, two classical NF-kappaB-responsive cytokines, and this induction is inhibited by N-acetyl-l-cysteine. A cytokine array reveals that Ad.hPNPase(old-35) infection specifically induces the expression of proinflammatory cytokines, such as IL-6, IL-8, RANTES, and matrix metalloproteinase (MMP)-3. We hypothesize that hPNPase(old-35) might play a significant role in producing pathological changes associated with aging by generating proinflammatory cytokines via ROS and NF-kappaB. Understanding the relationship between hPNPase(old-35) and inflammation and aging provides a unique opportunity to mechanistically comprehend and potentially intervene in these physiologically important processes.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center