Format

Send to

Choose Destination
J Mol Biol. 2004 Nov 5;343(5):1439-50.

Crystals of native and modified bovine rhodopsins and their heavy atom derivatives.

Author information

1
Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 2QH, UK.

Abstract

Rhodopsin, the pigment protein responsible for dim-light vision, is a G protein-coupled receptor that converts light absorption into the activation of a G protein, transducin, to initiate the visual response. We have crystallised detergent-solubilised bovine rhodopsin in the native form and after chemical modifications as needles 10-40 microm in cross-section. The crystals belong to the trigonal space group P3(1), with two molecules of rhodopsin per asymmetric unit, related by a non-crystallographic 2-fold axis parallel with the crystallographic screw axis along c (needle axis). The unit cell dimensions are a=103.8 A, c=76.6 A for native rhodopsin, but vary over a wide range after heavy atom derivatisation, with a between 101.5 A and 113.9 A, and c between 76.6 A and 79.2 A. Rhodopsin molecules are packed with the bundle of transmembrane helices tilted from the c-axis by about 100 degrees . The two molecules in the asymmetric unit form contacts along the entire length of their transmembrane helices 5 in an antiparallel orientation, and they are stacked along the needle axis according to the 3-fold screw symmetry. Hence hydrophobic contacts are prominent at protein interfaces both along and normal to the needle axis. The best crystals of native rhodopsin in this crystal form diffracted X-rays from a microfocused synchrotron source to 2.55 A maximum resolution. We describe steps taken to extend the diffraction limit from about 10 A to 2.6 A.

PMID:
15491622
DOI:
10.1016/j.jmb.2004.08.089
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center