Format

Send to

Choose Destination
Genetics. 2005 Jan;169(1):21-35. Epub 2004 Oct 16.

Genetic diversity, recombination and cryptic clades in Pseudomonas viridiflava infecting natural populations of Arabidopsis thaliana.

Author information

1
Department of Ecology and Evolution, University of Chicago, Chicago, Illinois 60615, USA.

Abstract

Species-level genetic diversity and recombination in bacterial pathogens of wild plant populations have been nearly unexplored. Pseudomonas viridiflava is a common natural bacterial pathogen of Arabidopsis thaliana, for which pathogen defense genes and mechanisms are becoming increasing well known. The genetic variation contained within a worldwide sample of P. viridiflava collected from wild populations of A. thaliana was investigated using five genomic sequence fragments totaling 2.3 kb. Two distinct and deeply diverged clades were found within the P. viridiflava sample and in close proximity in multiple populations, each genetically diverse with synonymous variation as high as 9.3% in one of these clades. Within clades, there is evidence of frequent recombination within and between each sequenced locus and little geographic differentiation. Isolates from both clades were also found in a small sample of other herbaceous species in Midwest populations, indicating a possibly broad host range for P. viridiflava. The high levels of genetic variation and recombination together with a lack of geographic differentiation in this pathogen distinguish it from other bacterial plant pathogens for which intraspecific variation has been examined.

PMID:
15489535
PMCID:
PMC1448860
DOI:
10.1534/genetics.104.031351
[Indexed for MEDLINE]
Free PMC Article

Publication types, MeSH terms, Secondary source ID, Grant support

Publication types

MeSH terms

Secondary source ID

Grant support

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center