Format

Send to

Choose Destination
J Mol Biol. 1992 Mar 5;224(1):87-102.

Molecular analysis of the Bacillus subtilis bacteriophage SPP1 region encompassing genes 1 to 6. The products of gene 1 and gene 2 are required for pac cleavage.

Author information

1
Max-Planck-Institut für molekulare Genetik, Berlin, Germany.

Abstract

Packaging of Bacillus subtilis phage SPP1 DNA into viral capsids is initiated at a specific DNA site termed pac. Using an in vivo assay for pac cleavage, we show that initiation of DNA synthesis and DNA packaging are uncoupled. When the DNA products of pac cleavage were analyzed, we could detect the pac end that was destined to be packaged, but we failed to detect the other end of the cleavage reaction. SPP1 conditional lethal mutants, which map adjacent to pac, were analyzed with our assay. This revealed that the products of gene 1 and gene 2 are essential for pac cleavage. SPP1 mutants that are affected in the genes necessary for viral capsid formation (gene 41) or involved in headful cleavage (gene 6) remain proficient in pac site cleavage. Analysis of the nucleotide sequence (2.769 x 10(3) base-pairs) of the region of the genes required for pac cleavage revealed five presumptive genes. We have assigned gene 1 and gene 2 to two of these open reading frames (orf), giving the gene order gene 1-gene 2-orf 3-orf 4-orf 5. The direction of transcription of the gene 1 to orf 5 operon and the length of the mRNAs was determined. We have identified, upstream from gene 1, the major transcriptional start point (P1). Transcription originating from P1 requires a phage-encoded factor for activity. The organization of gene 1 and gene 2 of SPP1 resembles the organization of genes in the pac/cos region of different Escherichia coli double-stranded DNA phages. We propose that the conserved gene organization is representative of the packaging machinery of a primordial packaging system.

PMID:
1548711
DOI:
10.1016/0022-2836(92)90578-8
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center