Send to

Choose Destination
J Invest Dermatol. 2004 Nov;123(5):850-5.

Evaluation of the potential role of cytokines in toxic epidermal necrolysis.

Author information

Inserm U 448, Hôpital Henri Mondor, Université Paris XII, Créteil, France.


Toxic epidermal necrolysis is a rare disease observed as a consequence of adverse reactions to drugs. It results in the widespread apoptosis of epidermal cells and has a high mortality rate. The mechanisms leading to this apoptosis are not yet elucidated. We investigated whether the cytokines present in the blister fluid, which accumulates under necrotic epidermis, originated from T lymphocytes and may play a role in the propagation of keratinocyte apoptosis. Interferon gamma (IFN-gamma), soluble tumor necrosis factor alpha (TNF-alpha), soluble Fas ligand (sFas-L) were present in much higher concentration in the blister fluids of 13 toxic epidermal necrolysis (TEN) patients than in control fluids from burns. The results of RT-PCR studies, however, indicated that only IFN-gamma and to a lesser extent interleukin (IL)-18 were produced by mononuclear cells present in the fluid. That suggests that the other cytokines also present (TNF-alpha, sFas-L, IL-10) rather originated from activated keratinocytes. Fas-L was indeed overexpressed on the membranes of keratinocytes in lesional skin in situ. The Th1 profile of T lymphocyte activation found in the blister fluid of patients with TEN is consistent with a key role for drug-specific cytotoxic T lymphocytes (CTL) as previously reported, the activation of keratinocytes by IFN-gamma making them sensitive to cell-mediated cytolysis. We propose the hypothesis that the production of Fas-L, TNF-alpha, and IL-10 by keratinocytes could be a defense mechanism against CTL rather than a way of propagating apoptosis among epidermal cells.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center