Format

Send to

Choose Destination
See comment in PubMed Commons below
Top Magn Reson Imaging. 2004 Jun;15(3):129-58.

Current concepts and advances in clinical parallel magnetic resonance imaging.

Author information

1
Lucas MRS/I Center, Department of Radiology, Stanford University, 1201 Welch Road, Stanford, CA 94305-5488, USA. rbammer@stanford.edu

Abstract

Parallel imaging (PI) is one of the most promising recent advances in MRI technology and has, similar to the introduction of multidetector helical scanning in CT, revolutionized MR imaging. The speed of all conventional MRI methods has been limited by either gradient strength or their switching times. The basic idea in PI is to use some of the spatial information contained in the individual elements of a radiofrequency (RF) receiver coil array to increase imaging speed. These PI techniques are removing some of the previous limitations in speed of MRI scanners and set the basis for accelerated image formation. Initially, PI was motivated by the wish to accelerate image acquisition without reducing the spatial resolution of the image. However, depending on the application, it turned out that PI harbors several other advantages. Among those is the possibility for higher spatial resolution, shorter breath-holds or multiple averaging to diminish motion artifacts, reduced image blurring and geometric distortions, better temporal resolution, and means for navigator correction. This overview focuses on technical aspects, clinical applications, and ongoing research in different areas of the human body. The critical review demonstrates PI's great versatility as well as the current trends to use this unique technique in the majority of clinical scan protocols.

PMID:
15479997
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Lippincott Williams & Wilkins
    Loading ...
    Support Center