Format

Send to

Choose Destination
See comment in PubMed Commons below
J Neurosci Res. 2004 Dec 1;78(5):723-31.

(-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury.

Author information

1
Health Science Center, Shanghai Institute for Biological Science, Chinese Academy of Science, Shanghai Second Medical University, Shanghai, Peoples Republic of China.

Abstract

Microglial activation is believed to play a pivotal role in the selective neuronal injury associated with several neurodegenerative disorders, including Parkinson's disease (PD) and Alzheimer's disease. We provide evidence that (-)-epigallocatechin gallate (EGCG), a major monomer of green tea polyphenols, potently inhibits lipopolysaccharide (LPS)-activated microglial secretion of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-alpha) through the down-regulation of inducible NO synthase and TNF-alpha expression. In addition, EGCG exerted significant protection against microglial activation-induced neuronal injury both in the human dopaminergic cell line SH-SY5Y and in primary rat mesencephalic cultures. Our study demonstrates that EGCG is a potent inhibitor of microglial activation and thus is a useful candidate for a therapeutic approach to alleviating microglia-mediated dopaminergic neuronal injury in PD.

PMID:
15478178
DOI:
10.1002/jnr.20315
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center