Format

Send to

Choose Destination
See comment in PubMed Commons below
Clin Cancer Res. 2004 Oct 1;10(19):6650-60.

Influence of casein kinase II in tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human rhabdomyosarcoma cells.

Author information

  • 1Division of Molecular Therapeutics, Department of Hematology-Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA.

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) induces apoptosis via the death receptors DR4 and DR5 in transformed cells in vitro and exhibits potent antitumor activity in vivo with minor side effects. Protein kinase casein kinase II (CK2) is increased in response to diverse growth stimuli and is aberrantly elevated in a variety of human cancers. Rhabdomyosarcoma tumors are the most common soft-tissue sarcoma in childhood. In this investigation, we demonstrate that CK2 is a key survival factor that protects tumor cells from TRAIL-induced apoptosis. We have demonstrated that inhibition of CK2 phosphorylation events by 5,6-dichlorobenzimidazole (DRB) resulted in dramatic sensitization of tumor cells to TRAIL-induced apoptosis. CK2 inhibition also induced rapid cleavage of caspase-8, -9, and -3, as well as the caspase substrate poly(ADP-ribose) polymerase after TRAIL treatment. Overexpression of Bcl-2 protected cells from TRAIL-induced apoptosis in the presence of the CK2 inhibitor. Death signaling by TRAIL in these cells was Fas-associated death domain and caspase dependent because dominant negative Fas-associated death domain or the cowpox interleukin 1beta-converting enzyme inhibitor protein cytokine response modifier A prevented apoptosis in the presence of DRB. Analysis of death-inducing signaling complex (DISC) formation demonstrated that inhibition of CK2 by DRB increased the level of recruitment of procaspase-8 to the DISC and enhanced caspase-8-mediated cleavage of Bid, thereby increasing the release of the proapoptotic factors cytochrome c, HtrA2/Omi, Smac/DIABLO, and apoptosis inducing factor (AIF) from the mitochondria, with subsequent degradation of X-linked inhibitor of apoptosis protein (XIAP). To further interfere with CK2 function, JR1 and Rh30 cells were transfected with either short hairpin RNA targeted to CK2alpha or kinase-inactive CK2alpha (K68M) or CK2alpha' (K69M). Data show that the CK2 kinase activity was abrogated and that TRAIL sensitivity in both cell lines was increased. Silencing of CK2alpha expression with short hairpin RNA was also associated with degradation of XIAP. These findings suggest that CK2 regulates TRAIL signaling in rhabdomyosarcoma by modulating TRAIL-induced DISC formation and XIAP expression.

PMID:
15475455
DOI:
10.1158/1078-0432.CCR-04-0576
[PubMed - indexed for MEDLINE]
Free full text

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center