Format

Send to

Choose Destination
See comment in PubMed Commons below
Drug Metab Dispos. 2005 Jan;33(1):10-8. Epub 2004 Oct 8.

Structural and functional diversity in heme monooxygenases.

Author information

1
Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697-3900, USA. poulos@uci.edu

Abstract

Recent advances in understanding structure-function relationships in cytochrome P450 (P450), nitric-oxide synthase (NOS), and heme oxygenase are summarized. Of particular importance is the role that dynamics plays in P450 function, where the active site undergoes large open/close motions to enable substrates to bind and products to leave. In sharp contrast, the heme-containing active site of NOS is rigid and remains relatively exposed compared with P450s. This difference in dynamics and active site exposure requires that the O(2) activation machinery operate somewhat differently in P450 and NOS. Owing to the open NOS active site, the NOS-oxy complex could be subject to nonspecific protonation that short-circuits the normal reaction path. One working hypothesis holds that NOS recruited the cofactor, tetrahydrobiopterin, to bind near the heme for very rapid coupled electron/proton transfer to the oxy complex, which avoids indiscriminate reaction with bulk solvent. Despite these differences, P450, NOS, and also heme oxygenase use a very similar network of H-bonded water molecules in the active site that are required for oxygen activation. Both P450 and NOS are important drug targets. With NOS, the structural basis for isoform-selective inhibition by a class of dipeptide inhibitors has been worked out, thus providing the basis for structure-based drug design.

PMID:
15475411
DOI:
10.1124/dmd.104.002071
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center