Send to

Choose Destination
See comment in PubMed Commons below
Blood. 1992 Mar 15;79(6):1593-601.

Isolation of cDNA coding for an ubiquitous membrane protein deficient in high Na+, low K+ stomatocytic erythrocytes.

Author information

Department of Medicine, University College and Middlesex Medical School, Rayne Institute, London, UK.


Human red blood cells (RBCs) that are deficient in an integral membrane-associated protein ("stomatin") of apparent molecular mass 31 Kd show a catastrophic increase in passive membrane permeability to the univalent cations Na+ and K+ and are stomatocytic in shape. We have purified this protein from normal RBC membranes and isolated a cDNA clone coding for it. The deduced protein sequence is unrelated to that of any known ion-transport-related protein. Selective solubilization studies using detergents show that while the protein is strongly associated with the phospholipid bilayer, it also binds to the cytoskeleton. The predicted polypeptide has a single trans-membranous hydrophobic segment near the N-terminus, which would locate it in the membrane; the large C-terminal domain is hydrophilic and cytoplasmic in orientation and is presumed to be responsible for the attachment to the cytoskeleton. By inference, the protein has the function of closing a latent ion channel. The messenger RNA encoding this protein is ubiquitously distributed in different human cell types and tissues and is thus presumably a widely distributed regulator of transmembrane cation fluxes. As a membrane-bound inhibitor protein of Na+ and K+ transport, it is unique among the known components of membrane-transport proteins.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center