Send to

Choose Destination
See comment in PubMed Commons below
Macromol Biosci. 2004 Sep 16;4(9):882-90.

Porous-conductive chitosan scaffolds for tissue engineering, 1. Preparation and characterization.

Author information

  • 1School of Materials Engineering, Suzhou University, Suzhou, 215006, People's Republic of China.


Novel porous-conductive chitosan scaffolds were fabricated by incorporating conductive polypyrrole (PPy) particles into a chitosan matrix and employing a phase separation technique to build pores inside the scaffolds. Conductive polypyrrole particles were prepared with a microemulsion method using FeCl3 as a dopant. The preparation conditions were optimized to obtain scaffolds with controlled pore size and porosity. The conductivity of the scaffolds was investigated using a standard four-point probe technique. It was found that several kinds of scaffolds showed a conductivity close to 10(-3) with a low polypyrrole loading of around 2 wt.-%. The main mechanical properties, such as tensile strength, breaking elongation and Young's modulus of the scaffolds, were examined both in the dry and in the hydrated states. The results indicated that a few different kinds of scaffolds exhibited the desired mechanical strength for some tissue engineering applications. The miscibility of polypyrrole and chitosan was also evaluated using a dynamic mechanical method. The presence of significant phase separation was detected in non-porous PPy/chitosan scaffolds but enhanced miscibility in porous PPy/chitosan scaffolds was observed.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Wiley
    Loading ...
    Support Center