Format

Send to

Choose Destination
Physiol Genomics. 2004 Dec 15;20(1):45-54. Epub 2004 Oct 5.

Gene expression profiling in chronic copper overload reveals upregulation of Prnp and App.

Author information

1
Department of Nutritional Science and Toxicology, University of California, Berkeley 94720, USA.

Abstract

The level at which copper becomes toxic is not clear. Several studies have indicated that copper causes oxidative stress; however, most have tested very high levels of copper exposure. We currently have only a limited understanding of the protective systems that operate in cells chronically exposed to copper. Additionally, the limits of homeostatic regulation are not known, making it difficult to define the milder effects of copper excess. Furthermore, a robust assay to facilitate the diagnosis of copper excess and to distinguish mild, moderate, and severe copper overload is needed. To address these issues, we have investigated the effects on steady-state gene expression of chronic copper overload in a cell culture model system using cDNA microarrays. For this study we utilized cells from genetic models of copper overload: fibroblast cells from two mouse mutants, C57BL/6-Atp7a(Mobr) and C57BL/6-Atp7a(Modap). These cell lines accumulate copper to abnormally high levels in normal culture media due to a defect in copper export from the cell. We identified 12 differentially expressed genes in common using our outlier identification methods. Surprisingly, our results show no evidence of oxidative stress in the copper-loaded cells. In addition, candidate components perhaps responsible for a copper-specific homeostatic response are identified. The genes that encode for the prion protein and the amyloid-beta precursor protein, two known copper-binding proteins, are upregulated in both cell lines.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center