Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Dec 10;279(50):52160-7. Epub 2004 Oct 4.

Leaky beta-oxidation of a trans-fatty acid: incomplete beta-oxidation of elaidic acid is due to the accumulation of 5-trans-tetradecenoyl-CoA and its hydrolysis and conversion to 5-trans-tetradecenoylcarnitine in the matrix of rat mitochondria.

Author information

1
Department of Chemistry, City College and Graduate Center of the City University of New York, New York, New York 10031, USA.

Abstract

The degradation of elaidic acid (9-trans-octadecenoic acid), oleic acid, and stearic acid by rat mitochondria was studied to determine whether the presence of a trans double bond in place of a cis double bond or no double bond affects beta-oxidation. Rat mitochondria from liver or heart effectively degraded the coenzyme A derivatives of all three fatty acids. However, with elaidoyl-CoA as a substrate, a major metabolite accumulated in the mitochondrial matrix. This metabolite was isolated and identified as 5-trans-tetradecenoyl-CoA. In contrast, little or none of the corresponding metabolites were detected with oleoyl-CoA or stearoyl-CoA as substrates. A kinetic study of long-chain acyl-CoA dehydrogenase (LCAD) and very long-chain acyl-CoA dehydrogenase revealed that 5-trans-tetradecenoyl-CoA is a poorer substrate of LCAD than is 5-cis-tetradecenoyl-CoA, while both unsaturated acyl-CoAs are poor substrates of very long-chain acyl-CoA dehydrogenase when compared with myristoyl-CoA. Tetradecenoic acid and tetradecenoylcarnitine were detected by gas chromatography/mass spectrometry and tandem mass spectrometry, respectively, when rat liver mitochondria were incubated with elaidoyl-CoA but not when oleoyl-CoA was the substrate. These observations support the conclusion that 5-trans-tetradecenoyl-CoA accumulates in the mitochondrial matrix, because it is less efficiently dehydrogenated by LCAD than is its cis isomer and that the accumulation of this beta-oxidation intermediate facilitates its hydrolysis and conversion to 5-trans-tetradecenoylcarnitine thereby permitting a partially degraded fatty acid to escape from mitochondria. Analysis of this compromised but functional process provides insight into the operation of beta-oxidation in intact mitochondria.

PMID:
15466478
DOI:
10.1074/jbc.M409640200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center