Format

Send to

Choose Destination
J Neurophysiol. 2005 Feb;93(2):819-28. Epub 2004 Sep 29.

Staggered development of GABAergic and glycinergic transmission in the MNTB.

Author information

1
Oregon Hearing Research Center/Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA.

Abstract

Maturation of some brain stem and spinal inhibitory systems is characterized by a shift from GABAergic to glycinergic transmission. Little is known about how this transition is expressed in terms of individual axonal inputs and synaptic sites. We have explored this issue in the rat medial nucleus of the trapezoid body (MNTB). Synaptic responses at postnatal days 5-7 (P5-P7) were small, slow, and primarily mediated by GABA(A) receptors. By P8-P12, an additional, faster glycinergic component emerged. At these ages, GABA(A), glycine, or both types of receptors mediated transmission, even at single synaptic sites. Thereafter, glycinergic development greatly accelerated. By P25, evoked inhibitory postsynaptic currents (IPSCs) were 10 times briefer and 100 times larger than those measured in the youngest group, suggesting a proliferation of synaptic inputs activating fast-kinetic receptors. Glycinergic miniature IPSCs (mIPSCs) increased markedly in size and decay rate with age. GABAergic mIPSCs also accelerated, but declined slightly in amplitude. Overall, the efficacy of GABAergic inputs showed little maturation between P5 and P20. Although gramicidin perforated-patch recordings revealed that GABA or glycine depolarized P5-P7 cells but hyperpolarized P14-P15 cells, the young depolarizing inputs were not suprathreshold. In addition, vesicle-release properties of inhibitory axons also matured: GABAergic responses in immature rats were highly asynchronous, while in older rats, precise, phasic glycinergic IPSCs could transmit even with 500-Hz stimuli. Thus development of inhibition is characterized by coordinated modifications to transmitter systems, vesicle release kinetics, Cl- gradients, receptor properties, and numbers of synaptic inputs. The apparent switch in GABA/glycine transmission was predominantly due to enhanced glycinergic function.

PMID:
15456797
DOI:
10.1152/jn.00798.2004
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center