Send to

Choose Destination
Anal Chem. 2004 Oct 1;76(19):5769-76.

Proteomic profiling of intact mycobacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.

Author information

National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, 1095 Willowdale Road, Morgantown, WV 26505, USA.


Current methods for the identification of mycobacteria in culture are time-consuming, requiring as long as 12 weeks for positive identification. One potential approach to rapid mycobacterial identification is to utilize proteomic profiling of cultures by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). In this report, we have applied MALDI-TOF MS to proteomic profiling of cultured microorganisms representing six species of the genus Mycobacterium. We find that analysis of acetonitrile/trifluoroacetic acid cellular extracts produces data similar to that of the analysis of deposited whole cells, while minimizing human contact with the microorganisms and rendering them nonviable. A matrix composition of alpha-cyano-4-hydroxycinnamic acid with fructose yields highly reproducible MALDI-TOF spectra. Statistical analysis of MALDI-TOF MS data allows differentiation of each individual mycobacterial species on the basis of unique mass fingerprints. The methodology allows identification of a number of unique (potentially diagnostic) biomarkers as targets for protein identification by MS/MS experiments. In addition, we observe a number of signals common to all mycobacterial species studied by MALDI-TOF MS, which may be genus-specific biomarkers. The potentially genus-specific biomarkers occur at low mass (<2 kDa) and are likely to be lipids and cell wall components such as mycolic acids. This study demonstrates the potential for mass spectrometry-based identification/classification of mycobacteria.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center