Send to

Choose Destination

Investigation of muscle recruitment patterns in scoliosis using a biomechanical finite element model.

Author information

Ecole Polytechnique, Station Centre-ville, Montreal, H3C 3A7, Canada.


The objective of this project is to study the characteristics of trunk muscle recruitment strategies experimentally observed for scoliotic subjects using a finite element model of the trunk. The personalized biomechanical model includes elements representing the osseo-ligamentous structures of the spine, rib cage and pelvis. It also integrates the principal agonistic muscles necessary for trunk movement and a neural control model based on the Equilibrium Point hypothesis (lambda model of Feldman). Muscle recruitment patterns of normal and scoliotic subjects obtained from the simulation of lateral bending movements were qualitatively compared. The generation process of motor control variables was studied by analysing the relationships between central commands and spine segment mobility. Differences in recruitment patterns between normal and scoliotic subjects were observed, especially for paraspinal fascicles crossing the thoracic curve segment. The generation of central commands for normal subjects was strongly correlated with the amplitude of bending, but this relation was weaker for scoliotic subjects and this difference was worst at the apex vertebra. These results show that neuromuscular disorders could occur at a local level. The proposed approach should provide a simulation tool to study the multifactorial origin of scoliosis, and to investigate the implication of muscles and central commands in spinal dysfunctions.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for IOS Press
Loading ...
Support Center