Send to

Choose Destination
See comment in PubMed Commons below
Biochem Pharmacol. 2004 Oct 15;68(8):1667-74.

My close encounter with GABA(B) receptors.

Author information

Department of Cellular and Molecular Pharmacology, Genentech Hall, Mission Bay Campus, University of California at San Francisco, San Francisco, CA 94143, USA.


In this review, I summarize the sequence of events involved in characterizing the functional role of GABA(B) receptors in the CNS and their involvement in synaptic transmission. The story was launched with the realization that baclofen was a selective agonist of GABA(B) receptors. This lead to the discovery in the CNS that GABA(B) receptor activation could result in a presynaptic inhibition of transmitter release as well as a postsynaptic increase in potassium conductance. Based on this information, it was found that GABA also activated a potassium conductance. A role for GABA(B) receptors in synaptic transmission was suggested by the fact that activation of GABAergic interneurons could generate a slow IPSP mediated by an increase in potassium conductance. To link this slow IPSP to GABA(B) receptors required a selective GABA(B) antagonist. Phaclofen was the first antagonist developed and was found to antagonize the action of baclofen and the GABA(A) independent action of GABA. Most importantly, it blocked the slow IPSP. The properties of GABA(A) and GABA(B) IPSPs are remarkably different. GABA(A) IPSPs powerfully inhibit neurons and rapidly curtail excitatory inputs. This greatly enhances the precision of excitatory synaptic transmission. GABA(B) IPSPs are recruited with repetitive and synchronous activity and are postulated to modulate the rhythmic network activity of cortical tissue.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center