Format

Send to

Choose Destination
See comment in PubMed Commons below
Brain Res. 2004 Oct 22;1024(1-2):212-24.

Characterization of modulatory effects of postsynaptic metabotropic glutamate receptors on calcium currents in rat nucleus tractus solitarius.

Author information

1
Department of Physiology, Tokyo Dental College, 1-2-2 Masago, Mihama-ku, Chiba 261-8502, Japan.

Abstract

It is well known that metabotropic glutamate receptors (mGluRs) have multiple actions on neuronal excitability mediated by G-protein-coupled receptors, although the exact mechanisms by which these actions occur are not understood. This study examines the effects of mGluRs agonists on voltage-dependent Ca2+ channels (VDCCs) currents (ICa) in the nucleus tractus solitarius (NTS) of rats using patch-clamp recording methods. An application of (RS)-3,5-dihydroxyphenylglycine (DHPG, Group I mGluR agonist) caused both facilitation and inhibition of L-type and N/P/Q-types ICa, respectively. Neither (2S, 2'R, 3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG, Group II mGluRs agonist) nor L-(+)-2-amino-4-phosphonobutyric acid (AP-4, Group III mGluRs agonist) nor (RS)-2-chloro-5-hydroxyphenylglycine (CHPG, mGluR5 agonist) modulated ICa. Intracellular dialysis of the Gq/11-protein antibody and Gi-protein antibody attenuated the DHPG-induced facilitation and inhibition, respectively. The phospholipase C (PLC) inhibitor, as well as inhibition of either the protein kinase C (PKC) or inositol-1,4,5-trisphosphate (IP3) attenuated the DHPG-induced facilitation of ICa but not a DHPG-induced inhibition. Application of a strong depolarizing voltage prepulse attenuated the DHPG-induced inhibition of ICa. These results indicate that mGluR1 facilitates L-type VDCCs via Gq/11-protein involving PKC including IP3 formation. On the other hand, mGluR1 inhibits N- and P/Q-types VDCCs via Gi-protein betagamma subunits.

PMID:
15451384
DOI:
10.1016/j.brainres.2004.07.074
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center