Send to

Choose Destination
See comment in PubMed Commons below
Neurotoxicol Teratol. 2004 Nov-Dec;26(6):757-68.

Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis.

Author information

Great Lakes WATER Institute, University of Wisconsin-Milwaukee, 600 E. Greenfield Avenue, Milwaukee, WI 53204, USA.


Exposure to ethanol during development can lead to a constellation of congenital anomalies, resulting in prenatal and postnatal failure to thrive, central nervous system (CNS) deficits, and a number of patterning defects that lead to defects in the cardiovascular system, facial structures, and limbs. The cellular, biochemical, and molecular mechanisms by which ethanol exerts its developmental toxicity and the genes that influence sensitivity to developmental ethanol exposure have yet to be discovered, despite being one of the more common nongenetic causes of birth defects. The zebrafish undergoes much the same patterning and morphogenesis as other vertebrate embryos do--including humans--that are distinct and cannot be studied in invertebrates. Developmental processes in zebrafish are affected by ethanol exposure in a dose-dependent manner, resulting in learning and memory deficits, cell death in the CNS, skeletal dysmorphogenesis, and alterations in startle reflex responses. Interestingly, significant ethanol effects on learning and behavioral endpoints occurred at concentrations well below those that induced cell death in the CNS. This work provides the foundation for identifying genes and pathways involved in developmental alcohol toxicity in vertebrates, leading to a more complete mechanistic understanding of fetal alcohol disorders in humans.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center