Send to

Choose Destination
See comment in PubMed Commons below
Lab Invest. 2004 Dec;84(12):1655-65.

Mice depleted of CD8+ T and NK cells are resistant to injury caused by cecal ligation and puncture.

Author information

Department of Anesthesiology, The University of Texas Medical Branch, Shriners Hospital for Children, Galveston, TX 77555-0591, USA.


We previously showed that beta 2 microglobulin knockout mice depleted of NK cells by treatment with anti-asialoGM1 (beta2MKO/alphaAsGM1 mice) are resistant to sepsis caused by cecal ligation and puncture (CLP). beta2MKO mice possess multiple immunological defects including depletion of CD8+ T cells. This study was designed to determine the contribution of CD8+ T and NK cell deficiency to the resistance of beta2MKO/alphaAsGM1 mice to CLP-induced injury. beta2MKO/alphaAsGM1 mice and CD8 knockout mice treated with anti-asialoGM1 (CD8KO/alphaAsGM1 mice) survived significantly longer than wild-type mice following CLP. Improved long-term survival was also observed in wild-type mice rendered CD8+ T/NK cell-deficient by treatment with both anti-CD8alpha and anti-asialoGM1. Blood gas analysis and body temperature measurements showed that CD8+ T and NK cell-deficient mice have significantly reduced metabolic acidosis and less hypothermia compared to control mice at 18 h after CLP. CD8+ T/NK cell-deficient mice also showed an attenuated proinflammatory response as indicated by decreased expression of mRNAs for IL-1, IL-6 and MIP-2 in spleen and heart. IL-6, KC and MIP-2 levels in blood and peritoneal fluid were also significantly decreased CD8+ T/NK cell-deficient mice compared to controls. CD8+ T/NK cell-deficient mice exhibited decreased bacterial concentrations in blood, but not in peritoneal fluid or lung, compared to wild-type controls. These data show that mice depleted of CD8+ T and NK cells exhibit survival benefit, improved physiologic function and an attenuated proinflammatory response following CLP that is comparable to beta2M/alphaAsGM1 mice.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center