Format

Send to

Choose Destination
See comment in PubMed Commons below
Int J Radiat Oncol Biol Phys. 2004 Oct 1;60(2):636-47.

MRI-based treatment planning for radiotherapy: dosimetric verification for prostate IMRT.

Author information

  • 1Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA.

Abstract

PURPOSE:

Magnetic resonance (MR) and computed tomography (CT) image fusion with CT-based dose calculation is the gold standard for prostate treatment planning. MR and CT fusion with CT-based dose calculation has become a routine procedure for intensity-modulated radiation therapy (IMRT) treatment planning at Fox Chase Cancer Center. The use of MRI alone for treatment planning (or MRI simulation) will remove any errors associated with image fusion. Furthermore, it will reduce treatment cost by avoiding redundant CT scans and save patient, staff, and machine time. The purpose of this study is to investigate the dosimetric accuracy of MRI-based treatment planning for prostate IMRT.

METHODS AND MATERIALS:

A total of 30 IMRT plans for 15 patients were generated using both MRI and CT data. The MRI distortion was corrected using gradient distortion correction (GDC) software provided by the vendor (Philips Medical System, Cleveland, OH). The same internal contours were used for the paired plans. The external contours were drawn separately between CT-based and MR imaging-based plans to evaluate the effect of any residual distortions on dosimetric accuracy. The same energy, beam angles, dose constrains, and optimization parameters were used for dose calculations for each paired plans using a treatment optimization system. The resulting plans were compared in terms of isodose distributions and dose-volume histograms (DVHs). Hybrid phantom plans were generated for both the CT-based plans and the MR-based plans using the same leaf sequences and associated monitor units (MU). The physical phantom was then irradiated using the same leaf sequences to verify the dosimetry accuracy of the treatment plans.

RESULTS:

Our results show that dose distributions between CT-based and MRI-based plans were equally acceptable based on our clinical criteria. The absolute dose agreement for the planning target volume was within 2% between CT-based and MR-based plans and 3% between measured dose and dose predicted by the planning system in the physical phantom.

CONCLUSIONS:

Magnetic resonance imaging is a useful tool for radiotherapy simulation. Compared with CT-based treatment planning, MR imaging-based treatment planning meets the accuracy for dose calculation and provides consistent treatment plans for prostate IMRT. Because MR imaging-based digitally reconstructed radiographs do not provide adequate bony structure information, a technique is suggested for producing a wire-frame image that is intended to replace the traditional digitally reconstructed radiographs that are made from CT information.

PMID:
15380601
DOI:
10.1016/j.ijrobp.2004.05.068
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center