Send to

Choose Destination
Proteomics. 2004 Oct;4(10):3141-55.

The synaptic vesicle proteome: a comparative study in membrane protein identification.

Author information

Department of Biomedical and Pharmaceutical Sciences The University of Montana, Missoula, MT 59812, USA.


A proteomic analysis of the synaptic vesicle was undertaken to obtain a better understanding of vesicle regulation. Synaptic vesicles primarily consist of integral membrane proteins that are not well resolved on traditional isoelectric focusing/two-dimensional gel electrophoresis (IEF/2-DE) gels and are resistant to in-gel digestion with trypsin thereby reducing the number of peptides available for mass spectrometric analysis. To address these limitations, two complementary 2-DE methods were investigated in the proteome analysis: (a) IEF/sodium dodecyl sulfate-polyacrylamide gel electrophoresis (IEF/SDS-PAGE) for resolution of soluble proteins and, (b) Benzyl hexadecyl ammonium chloride/SDS-PAGE (16-BAC/SDS-PAGE) for resolution of integral membrane proteins. The IEF/SDS-PAGE method provided superior resolution of soluble proteins, but could only resolve membrane proteins with a single transmembrane domain. The 16-BAC/SDS-PAGE method improved separation, resolution and identification of integral membrane proteins with up to 12 transmembrane domains. Trypsin digestion of the integral membrane proteins was poor and fewer peptides were identified from these proteins. Analysis of both the peptide mass fingerprint and the tandem mass spectra using electrospray ionization quadrupole-time of flight mass spectrometry led to the positive identification of integral membrane proteins. Using both 2-DE separation methods, a total of 36 proteins were identified including seven integral membrane proteins, 17 vesicle regulatory proteins and four proteins whose function in vesicles is not yet known.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center