Send to

Choose Destination
See comment in PubMed Commons below
Oecologia. 2005 Jan;142(2):296-306. Epub 2004 Sep 16.

Soil carbon dioxide partial pressure and dissolved inorganic carbonate chemistry under elevated carbon dioxide and ozone.

Author information

  • 1USDA Forest Service, North Central Research Station, 410 MacInnes Drive, Houghton, MI 49931, USA.


Global emissions of atmospheric CO(2) and tropospheric O(3) are rising and expected to impact large areas of the Earth's forests. While CO(2) stimulates net primary production, O(3) reduces photosynthesis, altering plant C allocation and reducing ecosystem C storage. The effects of multiple air pollutants can alter belowground C allocation, leading to changes in the partial pressure of CO(2) (pCO(2)) in the soil , chemistry of dissolved inorganic carbonate (DIC) and the rate of mineral weathering. As this system represents a linkage between the long- and short-term C cycles and sequestration of atmospheric CO(2), changes in atmospheric chemistry that affect net primary production may alter the fate of C in these ecosystems. To date, little is known about the combined effects of elevated CO(2) and O(3) on the inorganic C cycle in forest systems. Free air CO(2) and O(3) enrichment (FACE) technology was used at the Aspen FACE project in Rhinelander, Wisconsin to understand how elevated atmospheric CO(2) and O(3) interact to alter pCO(2) and DIC concentrations in the soil. Ambient and elevated CO(2) levels were 360+/-16 and 542+/-81 microl l(-1), respectively; ambient and elevated O(3) levels were 33+/-14 and 49+/-24 nl l(-1), respectively. Measured concentrations of soil CO(2) and calculated concentrations of DIC increased over the growing season by 14 and 22%, respectively, under elevated atmospheric CO(2) and were unaffected by elevated tropospheric O(3). The increased concentration of DIC altered inorganic carbonate chemistry by increasing system total alkalinity by 210%, likely due to enhanced chemical weathering. The study also demonstrated the close coupling between the seasonal delta(13)C of soil pCO(2) and DIC, as a mixing model showed that new atmospheric CO(2) accounted for approximately 90% of the C leaving the system as DIC. This study illustrates the potential of using stable isotopic techniques and FACE technology to examine long- and short-term ecosystem C sequestration.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Support Center