Send to

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 1992 Mar;174(5):1537-43.

pH dependence and gene structure of inaA in Escherichia coli.

Author information

Department of Biology, Kenyon College, Gambier, Ohio 43022.


The weak-acid-inducible locus inaA in Escherichia coli was mapped to 48.6 min by P1 cotransduction of inaA Mud lac fusions and linked Tn10 insertions. The inaA1::lac fusion tested negative for phenotypes characteristic of mutations in the nearby locus ubiG. Sequence analysis of a fragment amplified by polymerase chain reaction located the inaA1::lac fusion joint within an open reading frame 311 nucleotides downstream of nrdB, transcribed in the opposite direction, encoding a 168-amino-acid polypeptide. Constitutive mutant strains identified on lactose MacConkey revealed a novel regulatory locus unlinked to inaA, which mapped at 34 min (designated inaR). Expression of inaA1::lac increased slightly with external acidification; the presence of benzoate, a membrane-permeant weak acid, greatly increased the acid effect. The expression at various combinations of benzoate and external pH correlated with the decrease in intracellular pH. The uncouplers salicylate and dinitrophenol also caused acid-dependent induction of inaA, but substantial induction was seen at external pH values higher than the internal pH; this effect cannot be caused by internal acidification. Nondissociating analogs of benzoate and salicylate, benzyl alcohol and salicyl alcohol, did not induce inaA. Expression of inaA was inversely related to growth temperature over the range of 30 to 45 degrees C. The inaA1::lac fusion was transferred to a strain defective for K+ uptake (kdpABC trkA trkD) in which pH homeostasis was shown to depend on the external K+ concentration. In this construct, inaA1::lac retained pH-dependent induction by benzoate but was not induced at low K+ concentrations. Induction of inaA appears to involve several factors in addition to internal pH. inaR may be related to the nearby locus marA/soxQ, which is inducible by acidic benzyl derivatives.

[Indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Support Center