Format

Send to

Choose Destination
See comment in PubMed Commons below
Chin Med J (Engl). 2004 Aug;117(8):1143-50.

Rac1 regulates the release of Weibel-Palade Bodies in human aortic endothelial cells.

Author information

1
Cardiovascular Center, Tongren Hospital, Capital University of Medical Sciences, Beijing 100730, China. sxyang68@hotmail.com

Abstract

BACKGROUND:

The release of Weibel-Palade Bodies (WPB) is a form of endothelial cell activation. But the signal transduction pathway leading to WPB release is not yet defined. We hypothesized that small G-protein rac1 and reactive oxygen species (ROS) mediate the ligand induced release of Weibel-Palade Bodies.

METHODS:

We tested this hypothesis by using wild-type and mutant adenoviral rac1 expression vectors, and by manipulating the production and destruction of superoxide and hydrogen peroxide in human aortic endothelial cells (HAEC).

RESULTS:

Thrombin (1.0 Unit, 30 min) induced the increase of WPB release by 3.7-fold in HAEC, and that H2O2 (0.1 mmol/L, 30 min) induced by 4.5-fold. These results correlated with thrombin-stimulated activation of rac-GTP binding activity by 3.5-fold, and increase of ROS production by 3.4-fold. The dominant negative adenoviral rac-N17 gene transfer dramatically inhibited the release of WPB by 64.2% (control) and 77.3% (thrombin-stimulation), and decreased ROS production by 65.5% (control) and 83.6% (thrombin-stimulation) compared with non-infected cells, respectively. Anti-oxidants, catalase and N-acetyl-cysteine significantly decreased the release of WPB by 34% and 79% in control cells, and further decreased by 63.6% and 46.7% in rac-N17 transferred cells compared with non-infected cells. We also confirmed that rac1 was located upstream of ROS in the WPB release pathway.

CONCLUSIONS:

Small G-protein rac1 medicates ligand-induced release of Weibel-Palade Bodies in human aortic endothelial cells, and the signal pathway of WPB release is a rac1-dependent ROS regulating mechanism.

PMID:
15361285
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Support Center