Format

Send to

Choose Destination
Biochem Biophys Res Commun. 2004 Aug 20;321(2):455-61.

Age-dependent methylation of ESR1 gene in prostate cancer.

Author information

1
Department of Urology, Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94121, USA.

Abstract

The incidence of prostate cancer increases dramatically with age and the mechanism underlying this association is unclear. Age-dependent methylation of estrogen receptor alpha (ESR1) gene has been previously implicated in other cancerous and benign diseases. We evaluated the age-dependent methylation of ESR1 in prostate cancer. The methylation status of ESR1 in 83 prostate cancer samples from patients aged 49 to 77 years (mean age at 67.4 years) was examined using the bisulfite genomic sequencing technique. The samples were divided into three age groups: men aged 60 years and under (n = 14), men aged 61-70 years (n = 40), and men aged over 70 years (n = 29). Overall, ESR1 promoter methylation was detected in 54 out of 83 (65.1%) prostate samples. The methylation rate of ESR1 increased dramatically with age from 50.0% in patients aged 60 years and under to 89.7% for patients aged 70 years and over. Logistic regression analyses revealed that age and Gleason score were the only variables that affect incidence of ESR1 methylation; other clinical factors such as prostate-specific antigen level and clinical stage did not. We also calculated ESR1 methylation density (the percentage of methylated CpGs among all CpGs within the analyzed region) and severity (the percentage of methylated CpG alleles) for each sample analyzed. Multiple regression analyses showed a positive correlation between age and methylation density (beta, 0.35; P, 0.012; 95% CI, 0.26-2.01); while Gleason score was positively associated with methylation severity (beta, 0.45; P, 0.018; 95% CI, 1.04-4.26). These findings suggest that methylation of ESR1 is both age-dependent and tumor differentiation-dependent and age-dependent methylation of ESR1 may represent a mechanism linking aging and prostate cancer.

PMID:
15358197
DOI:
10.1016/j.bbrc.2004.06.164
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center