Format

Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2004 Sep 9;431(7005):195-9.

Calcium transients in astrocyte endfeet cause cerebrovascular constrictions.

Author information

1
Brain Research Centre, Department of Psychiatry, University of British Columbia, 2211 Wesbrook Mall, Vancouver, BC, Canada, V6T 2B5.

Abstract

Cerebral blood flow (CBF) is coupled to neuronal activity and is imaged in vivo to map brain activation. CBF is also modified by afferent projection fibres that release vasoactive neurotransmitters in the perivascular region, principally on the astrocyte endfeet that outline cerebral blood vessels. However, the role of astrocytes in the regulation of cerebrovascular tone remains uncertain. Here we determine the impact of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in astrocytes on the diameter of small arterioles by using two-photon Ca(2+) uncaging to increase [Ca(2+)](i). Vascular constrictions occurred when Ca(2+) waves evoked by uncaging propagated into the astrocyte endfeet and caused large increases in [Ca(2+)](i). The vasoactive neurotransmitter noradrenaline increased [Ca(2+)](i) in the astrocyte endfeet, the peak of which preceded the onset of arteriole constriction. Depressing increases in astrocyte [Ca(2+)](i) with BAPTA inhibited the vascular constrictions in noradrenaline. We find that constrictions induced in the cerebrovasculature by increased [Ca(2+)](i) in astrocyte endfeet are generated through the phospholipase A(2)-arachidonic acid pathway and 20-hydroxyeicosatetraenoic acid production. Vasoconstriction by astrocytes is a previously unknown mechanism for the regulation of CBF.

Comment in

PMID:
15356633
DOI:
10.1038/nature02827
[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center