Format

Send to

Choose Destination
Electrophoresis. 2004 Aug;25(16):2892-8.

Direct enantioseparation of catechin and epicatechin in tea drinks by 6-O-alpha-D-glucosyl-beta-cyclodextrin-modified micellar electrokinetic chromatography.

Author information

1
Toyama Institute of Health, Kosugi-machi, Toyama, Japan. shuji.kodama@pref.toyama.lg.jp

Abstract

Cyclodextrin-modified micellar electrokinetic chromatography was applied to the enantioseparation of catechin and epicatechin using 6-O-alpha-D-glucosyl-beta-cyclodextrin together with sodium dodecyl sulfate and borate-phosphate buffer. Factors affecting chiral resolution and migration time of catechin and epicatechin were studied. The optimum running conditions were found to be 200 mM borate-20 mM phosphate buffer (pH 6.4) containing 25 mM 6-O-alpha-D-glucosyl-beta-cyclodextrin and 240 mM sodium dodecyl sulfate with an effective voltage of +25 kV at 20 degrees C using direct detection at 210 nm. Under these conditions, the resolution (Rs) of racemic catechin and epicatechin were 4.15 and 1.92, respectively. With this system, catechin and epicatechin enantiomers along with other four catechins ((-)-catechin gallate, (-)-epicatechin gallate, (-)-epigallocatechin, (-)-epigallocatechin gallate) and caffeine in tea samples were analyzed successfully. The difference of migration time between catechin and epicatechin is discussed.

PMID:
15352024
DOI:
10.1002/elps.200305902
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center