Send to

Choose Destination
Neuropsychologia. 2004;42(13):1781-7.

Shared and distinct neurophysiological components of the digits forward and backward tasks as revealed by functional neuroimaging.

Author information

Unit on Integrative Neuroimaging, Clinical Brain Disorders Branch, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD 20892-1365, USA.


The digits forward (DF) and backward (DB) tasks are widely used neuropsychological measures believed to tap overlapping systems of phonological processing and working memory. Studies of focal brain lesions have partially elucidated the brain regions essential for these tasks; however relatively little information exists on the underlying functional neuroanatomy in the intact brain. We therefore examined the shared and separate neural systems of these tasks in two positron emission tomography (PET) experiments. In Experiment 1, eight healthy participants performed verbal DF, DB, and a sensorimotor control task during measurement of regional cerebral blood flow (rCBF). DF and DB each activated frontal, parietal, and cerebellar regions as well as prominently activating medial occipital cortex. To eliminate possible visuospatial confounds, Experiment 2 replicated the first experiment in six additional healthy participants who were blindfolded during the study. No differences in activation were found between the two experimental groups. Combined data from both experiments demonstrate that DF and DB rely upon a largely overlapping functional neural system associated with working memory, most notably right dorsolateral prefrontal cortex (DLPFC) and bilateral inferior parietal lobule (IPL) as well as the anterior cingulate, a region associated with attentional effort. The degree of activation increased linearly with increasing task difficulty in DF. DB additionally recruited bilateral DLPFC, left IPL, and Broca's area. Medial occipital cortex (including higher and lower visual processing areas) was robustly activated in both DF and DB and could not be attributed to visual processing per se, suggesting a possible visual imagery strategy for these aural-verbal tasks.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center