Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2004 Nov 19;279(47):49523-32. Epub 2004 Sep 3.

Tumor necrosis factor-alpha, interleukin-1beta, and interferon-gamma stimulate gamma-secretase-mediated cleavage of amyloid precursor protein through a JNK-dependent MAPK pathway.

Author information

1
Laboratory of Molecular Neurobiology, Institute of Zoology, Academia Sinica, Taipei 115, Taiwan. yliao@sinica.edu.tw

Abstract

The deposition of the amyloid beta (Abeta) peptide in neuritic plaques plays a critical role in the pathogenesis of Alzheimer's disease (AD). Abeta is generated through the proteolysis of amyloid precursor protein (APP) by the sequential actions of beta- and gamma-secretases. Although recent evidence has unveiled much about the biochemical identity and characteristics of gamma-secretase, the mechanism regulating endogenous gamma-secretase activity remains elusive. To identify possible extracellular signals and associated signaling cascades that could regulate APP proteolysis by gamma-secretase activity, we have developed a cell-based reporter gene assay by stably cotransfecting HEK293 cells with the Gal4-driven luciferase reporter gene and the Gal4/VP16-tagged C-terminal fragment of APP (C99-GV), the immediate substrate of gamma-secretase. The cleavage of C99-GV by gamma-secretase releases the transcription factor that activates luciferase expression, providing a quantitative measurement of gamma-secretase activity. Using this reporter assay, we have demonstrated that interferon-gamma, interleukin-1beta, and tumor necrosis factor-alpha can specifically stimulate gamma-secretase activity, concomitant with increased production of Abeta and the intracellular domain of APP (AICD). The gamma-secretase-dependent cleavage of Notch is also enhanced upon the stimulation of these cytokines. The cytokine-enhanced gamma-secretase activity can be suppressed by a potent inhibitor of c-Jun N-terminal kinase (JNK). Furthermore, cells transfected with dominant-positive MEKK1, one of the most potent activators of the JNK cascade, exhibit increased gamma-secretase activity, suggesting that the JNK-dependent mitogen-activated protein kinase pathway could mediate the cytokine-elicited regulation of gamma-secretase. Our studies provide direct evidence that cytokine-elicited signaling cascades control Abeta production by modulating gamma-secretase activity.

PMID:
15347683
DOI:
10.1074/jbc.M402034200
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center