Format

Send to

Choose Destination
See comment in PubMed Commons below
J Exp Biol. 2004 Sep;207(Pt 20):3507-14.

Ground reaction forces in horses trotting up an incline and on the level over a range of speeds.

Author information

1
Department of Kinesiology and Health Promotion, California State Polytechnic University, Pomona 91768, USA. ddutto@csupomona.edu

Abstract

Although the forces required to support the body mass are not elevated when moving up an incline, kinematic studies, in vivo tendon and bone studies and kinetic studies suggest there is a shift in forces from the fore- to the hindlimbs in quadrupeds. However, there are no whole-animal kinetic measurements of incline locomotion. Based on previous related research, we hypothesized that there would be a shift in forces to the hindlimb. The present study measured the force produced by the fore- and hindlimbs of horses while trotting over a range of speeds (2.5 to 5 m s(-1)) on both level and up an inclined (10%) surface. On the level, forelimb peak forces increased with trotting speed, but hindlimb peak force remained constant. On the incline, both fore- and hindlimb peak forces increased with speed, but the sum of the peak forces was lower than on the level. On the level, over the range of speeds tested, total force was consistently distributed between the limbs as 57% forelimb and 43% hindlimb, similar to the weight distribution of the horses during static weight tests. On the incline, the force distribution during locomotion shifted to 52% forelimb and 48% hindlimb. Time of contact and duty factor decreased with speed for both limbs. Time of contact was longer for the forelimb than the hindlimb, a finding not previously reported for quadrupeds. Time of contact of both limbs tended to be longer when traveling up the incline than on the level, but duty factor for both limbs was similar under both conditions. Duty factor decreased slightly with increased speed for the hindlimb on the level, and the corresponding small, predicted increase in peak vertical force could not be detected statistically.

PMID:
15339946
DOI:
10.1242/jeb.01171
[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center