Format

Send to

Choose Destination
Cell Mol Biol Lett. 2004;9(3):529-41.

Extension of the Messapia x dicoccoides linkage map of Triticum turgidum (L.) Thell.

Author information

1
Department of Environmental and Agro-Forestry Biology and Chemistry, University of Bari, via Amendola, 165/A, 70126 Bari, Italy. blanco@agr.uniba.it

Abstract

A set of recombinant inbred lines (RIL) derived from a cross between the cultivar Messapia of durum wheat (Triticum turgidum var. durum) and the accession MG4343 of T. turgidum var. dicoccoides was analysed to increase the number of assigned markers and the resolution of the previously constructed genetic linkage map. An updated map of the durum wheat genome consisting of 458 loci was constructed. These loci include 261 Restriction Fragment Length Polymorphisms (RFLPs), 91 microsatellites (Simple Sequence Repeats, SSRs), 87 Amplified Fragment Length Polymorphisms (AFLPs), two ribosomal genes, and nine biochemical (seven seed storage proteins and two isozymes) and eight morphological markers. The loci were mapped on all 14 chromosomes of the A and B genomes, and covered a total distance of 3038.4 cM with an average distance of 6.7 cM between adjacent markers. The molecular markers were evenly distributed between the A and the B genomes (240 and 218 markers, respectively). An additional forty loci (8.8%) could not be assigned to a specific linkage group. A fraction (16.4%) of the markers significantly deviated from the expected Mendelian ratios; clusters of loci showing distorted segregation were found on the 1B, 2A, 2B, 3A, 4A, 7A and 7B chromosomes. The genetic lengths of the chromosomes range from 148.8 cM (chromosome 6B) to 318.0 cM (chromosome 2B) and approximately concur with their physical lengths. Chromosome 2B has the largest number of markers (47), while the chromosomes with the fewest markers are 3A and 6B (23). There are two gaps larger than 40 cM on chromosomes 2A and 3B. The durum wheat map was compared with the published maps of bread and durum wheats; the order of most common RFLP and SSR markers on the 14 chromosomes of the A and B genomes were nearly identical. A core-map can be extracted from the high-density Messapia x dicoccoides map and a subset of uniformly distributed markers can be used to detect and map quantitative trait loci.

PMID:
15332129
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Polish Society for Cell Biology
Loading ...
Support Center