Send to

Choose Destination

L-Glutamine ameliorates acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer.

Author information

Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.


Role of L-glutamine in the protection of intestinal epithelium from acetaldehyde-induced disruption of barrier function was evaluated in Caco-2 cell monolayer. L-Glutamine reduced the acetaldehyde-induced decrease in transepithelilal electrical resistance and increase in permeability to inulin and lipopolysaccharide in a time- and dose-dependent manner; d-glutamine, L-aspargine, L-arginine, L-lysine, or L-alanine produced no significant protection. The glutaminase inhibitor 6-diazo-5-oxo-L-norleucine failed to affect the L-glutamine-mediated protection of barrier function. L-Glutamine reduced the acetaldehyde-induced redistribution of occludin, zonula occludens-1 (ZO-1), E-cadherin, and beta-catenin from the intercellular junctions. Acetaldehyde dissociates occludin, ZO-1, E-cadherin, and beta-catenin from the actin cytoskeleton, and this effect was reduced by L-glutamine. L-Glutamine induced a rapid increase in the tyrosine phosphorylation of EGF receptor, and the protective effect of L-glutamine was prevented by AG1478, the EGF-receptor tyrosine kinase inhibitor. These results indicate that L-glutamine prevents acetaldehyde-induced disruption of the tight junction and increase in the paracellular permeability in Caco-2 cell monolayer by an EGF receptor-dependent mechanism.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center