Send to

Choose Destination
Plant Physiol Biochem. 2004 Jul-Aug;42(7-8):657-62.

Radical scavenging activity and oxidative modification of citrus dehydrin.

Author information

Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan.


Dehydrins are ubiquitous proteins produced by plants in response to water stress. Their functions, however, are not fully understood. The overexpression of Citrus unshiu Marcov. dehydrin (CuCOR19) enhanced cold tolerance in transgenic plants by reducing lipid peroxidation promoted by cold stress, suggesting that the CuCOR19 protein directly scavenges radicals. In this paper, we report the radical scavenging activity and oxidative modification of CuCOR19. The hydroxyl radical generated by the Fe2+/H2O2 system and peroxyl radical generated from 2, 2'-azobis (2-amidinopropane) (AAPH) were scavenged by CuCOR19, but hydrogen peroxide and superoxide were not. The scavenging activity for the hydroxyl radical and peroxyl radical of CuCOR19 was more potent than that of mannitol, and approximately equal to that of serum albumin, which is known as an antioxidative protein in mammals. CuCOR19 was degraded by the hydroxyl radical and peroxyl radical in a time- and dose-dependent manner. Mannitol and thiourea inhibited the degradation. Analysis of the amino acid composition of CuCOR19 indicated that glycine, histidine, and lysine, which are major residues in many dehydrins, were targeted by the hydroxyl radical. These results suggest that CuCOR19 is a radical scavenging protein, and may reduce oxidative damage induced by water stress in plants.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center