Send to

Choose Destination
Virology. 2004 Sep 15;327(1):16-25.

Determinants within gp120 and gp41 contribute to CD4 independence of SIV Envs.

Author information

Department of Microbiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.


Entry of simian immunodeficiency virus (SIV) into cells is mediated by binding of the viral envelope (Env) glycoprotein to cellular CD4 and chemokine receptor molecules. Interaction of the Env gp120 subunit with CD4 induces conformational changes that result in exposure of a conserved coreceptor binding site. The chemokine receptor CCR5 is the major coreceptor used for SIV entry. Many SIV Envs have the ability to bind directly to CCR5 in the absence of CD4, and CD4-independent SIVs have been shown to exhibit macrophage tropism, enhanced neutralization sensitivity, and reduced pathogenicity in nonhuman primates. SIVmac239 is a pathogenic, T-tropic, neutralization-resistant virus which encodes a CD4-dependent Env. By contrast, the SIVmac316 virus, which differs from 239 in Env by only eight amino acid substitutions and a gp41 cytoplasmic domain truncation, exhibits macrophage tropism in vitro, attenuated pathogenesis, neutralization sensitivity, and CD4-independent entry. We mapped the residues contributing to CD4-independent entry to substitutions at position 165 in the V1/V2 region of gp120 and position 573 of gp41. We find that substitution of both residues in replication-competent SIVmac239 virus results in gain of CD4 independence and enhanced neutralization sensitivity. By contrast, the converse substitutions placed in the background of SIVmac316 resulted in loss of CD4 independence and decreased neutralization sensitivity. Thus, as few as two amino acid changes can have dramatic effects on SIV Env phenotype.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center